Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 173
Filtrar
1.
bioRxiv ; 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38014190

RESUMO

Paleogenomics has expanded our knowledge of human evolutionary history. Since the 2020s, the study of ancient DNA has increased its focus on reconstructing the recent past. However, the accuracy of paleogenomic methods in answering questions of historical and archaeological importance amidst the increased demographic complexity and decreased genetic differentiation within the historical period remains an open question. We used two simulation approaches to evaluate the limitations and behavior of commonly used methods, qpAdm and the f3-statistic, on admixture inference. The first is based on branch-length data simulated from four simple demographic models of varying complexities and configurations. The second, an analysis of Eurasian history composed of 59 populations using whole-genome data modified with ancient DNA conditions such as SNP ascertainment, data missingness, and pseudo-haploidization. We show that under conditions resembling historical populations, qpAdm can identify a small candidate set of true sources and populations closely related to them. However, in typical ancient DNA conditions, qpAdm is unable to further distinguish between them, limiting its utility for resolving fine-scaled hypotheses. Notably, we find that complex gene-flow histories generally lead to improvements in the performance of qpAdm and observe no bias in the estimation of admixture weights. We offer a heuristic for admixture inference that incorporates admixture weight estimate and P-values of qpAdm models, and f3-statistics to enhance the power to distinguish between multiple plausible candidates. Finally, we highlight the future potential of qpAdm through whole-genome branch-length f2-statistics, demonstrating the improved demographic inference that could be achieved with advancements in f-statistic estimations.

2.
PLoS Genet ; 19(9): e1010931, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37676865

RESUMO

f-statistics have emerged as a first line of analysis for making inferences about demographic history from genome-wide data. Not only are they guaranteed to allow robust tests of the fits of proposed models of population history to data when analyzing full genome sequencing data-that is, all single nucleotide polymorphisms (SNPs) in the individuals being analyzed-but they are also guaranteed to allow robust tests of models for SNPs ascertained as polymorphic in a population that is an outgroup in a phylogenetic sense to all groups being analyzed. True "outgroup ascertainment" is in practice impossible in humans because our species has arisen from a substructured ancestral population that does not descend from a homogeneous ancestral population going back many hundreds of thousands of years into the past. However, initial studies suggested that non-outgroup-ascertainment schemes might produce robust enough results using f-statistics, and that motivated widespread fitting of models to data using non-outgroup-ascertained SNP panels such as the "Affymetrix Human Origins array" which has been genotyped on thousands of modern individuals from hundreds of populations, or the "1240k" in-solution enrichment reagent which has been the source of about 70% of published genome-wide data for ancient humans. In this study, we show that while analyses of population history using such panels work well for studies of relationships among non-African populations and one African outgroup, when co-modeling more than one sub-Saharan African and/or archaic human groups (Neanderthals and Denisovans), fitting of f-statistics to such SNP sets is expected to frequently lead to false rejection of true demographic histories, and failure to reject incorrect models. Analyzing panels of SNPs polymorphic in archaic humans, which has been suggested as a solution for the ascertainment problem, has limited statistical power and retains important biases. However, by carrying out simulations of diverse demographic histories, we show that bias in inferences based on f-statistics can be minimized by ascertaining on variants common in a union of diverse African groups; such ascertainment retains high statistical power while allowing co-analysis of archaic and modern groups.


Assuntos
População Africana , Demografia , Filogenia , Polimorfismo de Nucleotídeo Único , Animais , Humanos , População Negra/genética , Mapeamento Cromossômico , Genótipo , Homem de Neandertal/genética , Polimorfismo de Nucleotídeo Único/genética , População Africana/genética , Demografia/história , Variação Biológica da População/genética , Modelos Estatísticos , Viés
3.
mBio ; 14(5): e0147523, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37607056

RESUMO

IMPORTANCE: Campylobacter concisus is an excellent model organism to study respiration diversity, including anaerobic respiration of physiologically relevant N-/S-oxides compounds, such as biotin sulfoxide, dimethyl sulfoxide, methionine sulfoxide (MetO), nicotinamide N-oxide, and trimethylamine N-oxide. All C. concisus strains harbor at least two, often three, and up to five genes encoding for putative periplasmic Mo/W-bisPGD-containing N-/S-oxide reductases. The respective role (substrate specificity) of each enzyme was studied using a mutagenesis approach. One of the N/SOR enzymes, annotated as "BisA", was found to be essential for anaerobic respiration of both N- and S-oxides. Additional phenotypes associated with disruption of the bisA gene included increased sensitivity toward oxidative stress and elongated cell morphology. Furthermore, a biochemical approach confirmed that BisA can repair protein-bound MetO residues. Hence, we propose that BisA plays a role as a periplasmic methionine sulfoxide reductase. This is the first report of a Mo/W-bisPGD-enzyme supporting both N- or S-oxide respiration and protein-bound MetO repair in a pathogen.


Assuntos
Metionina , Óxidos , Anaerobiose , Metionina/metabolismo , Metionina Sulfóxido Redutases/genética , Metionina Sulfóxido Redutases/metabolismo , Respiração
4.
Echocardiography ; 40(7): 657-663, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37248818

RESUMO

BACKGROUND: Percutaneous closure of patent foramen ovale (PFO) is conventionally performed under continuous transesophageal echocardiographic (TEE) guidance. We aimed to evaluate whether a simplified procedural approach, including pure fluoroscopy-guidance and final TEE control, as well as an aimed 'next-day-discharge' is comparable with the conventional TEE-guided procedure in terms of periprocedural and intermediate-term outcomes. METHODS: All patients who underwent a PFO closure at our center between 2010 and 2022 were retrospectively included. Prior to June 2019 cases were performed with continuous TEE guidance (TEE-guided group). Since June 2019, only pure fluoroscopy-guided PFO closures have been performed with TEE insertion and control just prior to device release (fluoroscopy-guided group). We analyzed procedural aspects, as well as long term clinical and echocardiographic outcomes. RESULTS: In total 291 patients were included in the analysis: 197 in the TEE-guided group and 94 in the fluoroscopy-guided group. Fluoroscopy-guided procedures were markedly shorter (48 ± 20 min vs. 25 ± 9 min; p < .01). There was no difference in procedural complications, including death, major bleeding, device dislodgement, stroke or clinically relevant peripheral embolization between the two groups (.5% vs. 0%; p = .99). Hospital stay was also shorter with the simplified approach (2.5 ± 1.6 vs. 3.5 ± 1.2 days; p < .01), allowing 85% same-day discharges during the last 12 months of observation period. At 6 ± 3 months echocardiographic follow-up a residual leakage was described in 8% of the TEE-guided cases and 2% of the fluoroscopy-guided cases (p = .08). CONCLUSION: While a complete TEE-free PFO closure might have potential procedural risks, our approach of pure fluoroscopy-guided with a brisk final TEE check seems to be advantageous in terms of procedural aspects with no sign of any acute or intermediate-term hazard and it could offer an equitable compromise between the two worlds: a complete TEE procedure and a procedure without any TEE.


Assuntos
Forame Oval Patente , Dispositivo para Oclusão Septal , Humanos , Ecocardiografia Transesofagiana/métodos , Forame Oval Patente/diagnóstico por imagem , Forame Oval Patente/cirurgia , Estudos Retrospectivos , Resultado do Tratamento , Fluoroscopia/métodos , Cateterismo Cardíaco/métodos , Sistema de Registros
5.
Elife ; 122023 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-37057893

RESUMO

Our understanding of population history in deep time has been assisted by fitting admixture graphs (AGs) to data: models that specify the ordering of population splits and mixtures, which along with the amount of genetic drift and the proportions of mixture, is the only information needed to predict the patterns of allele frequency correlation among populations. The space of possible AGs relating populations is vast, and thus most published studies have identified fitting AGs through a manual process driven by prior hypotheses, leaving the majority of alternative models unexplored. Here, we develop a method for systematically searching the space of all AGs that can incorporate non-genetic information in the form of topology constraints. We implement this findGraphs tool within a software package, ADMIXTOOLS 2, which is a reimplementation of the ADMIXTOOLS software with new features and large performance gains. We apply this methodology to identify alternative models to AGs that played key roles in eight publications and find that in nearly all cases many alternative models fit nominally or significantly better than the published one. Our results suggest that strong claims about population history from AGs should only be made when all well-fitting and temporally plausible models share common topological features. Our re-evaluation of published data also provides insight into the population histories of humans, dogs, and horses, identifying features that are stable across the models we explored, as well as scenarios of populations relationships that differ in important ways from models that have been highlighted in the literature.


Assuntos
Genética Populacional , Hominidae , Humanos , Cães , Animais , Cavalos , Frequência do Gene , Software , Deriva Genética , Modelos Genéticos
6.
bioRxiv ; 2023 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-36711923

RESUMO

f -statistics have emerged as a first line of analysis for making inferences about demographic history from genome-wide data. These statistics can provide strong evidence for either admixture or cladality, which can be robust to substantial rates of errors or missing data. f -statistics are guaranteed to be unbiased under "SNP ascertainment" (analyzing non-randomly chosen subsets of single nucleotide polymorphisms) only if it relies on a population that is an outgroup for all groups analyzed. However, ascertainment on a true outgroup that is not co-analyzed with other populations is often impractical and uncommon in the literature. In this study focused on practical rather than theoretical aspects of SNP ascertainment, we show that many non-outgroup ascertainment schemes lead to false rejection of true demographic histories, as well as to failure to reject incorrect models. But the bias introduced by common ascertainments such as the 1240K panel is mostly limited to situations when more than one sub-Saharan African and/or archaic human groups (Neanderthals and Denisovans) or non-human outgroups are co-modelled, for example, f 4 -statistics involving one non-African group, two African groups, and one archaic group. Analyzing panels of SNPs polymorphic in archaic humans, which has been suggested as a solution for the ascertainment problem, cannot fix all these problems since for some classes of f -statistics it is not a clean outgroup ascertainment, and in other cases it demonstrates relatively low power to reject incorrect demographic models since it provides a relatively small number of variants common in anatomically modern humans. And due to the paucity of high-coverage archaic genomes, archaic individuals used for ascertainment often act as sole representatives of the respective groups in an analysis, and we show that this approach is highly problematic. By carrying out large numbers of simulations of diverse demographic histories, we find that bias in inferences based on f -statistics introduced by non-outgroup ascertainment can be minimized if the derived allele frequency spectrum in the population used for ascertainment approaches the spectrum that existed at the root of all groups being co-analyzed. Ascertaining on sites with variants common in a diverse group of African individuals provides a good approximation to such a set of SNPs, addressing the great majority of biases and also retaining high statistical power for studying population history. Such a "pan-African" ascertainment, although not completely problem-free, allows unbiased exploration of demographic models for the widest set of archaic and modern human populations, as compared to the other ascertainment schemes we explored.

7.
Genome Res ; 32(11-12): 2068-2078, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36517229

RESUMO

The strategy of in-solution enrichment for hundreds of thousands of single-nucleotide polymorphisms (SNPs) has been used to analyze >70% of individuals with genome-scale ancient DNA published to date. This approach makes it economical to study ancient samples with low proportions of human DNA and increases the rate of conversion of sampled remains into interpretable data. So far, nearly all such data have been generated using a set of bait sequences targeting about 1.24 million SNPs (the "1240k reagent"), but synthesis of the reagent has been cost-effective for only a few laboratories. In 2021, two companies, Daicel Arbor Biosciences and Twist Bioscience, made available assays that target the same core set of SNPs along with supplementary content. We test all three assays on a common set of 27 ancient DNA libraries and show that all three are effective at enriching many hundreds of thousands of SNPs. For all assays, one round of enrichment produces data that are as useful as two. In our testing, the "Twist Ancient DNA" assay produces the highest coverages, greatest uniformity on targeted positions, and almost no bias toward enriching one allele more than another relative to shotgun sequencing. We also identify hundreds of thousands of targeted SNPs for which there is minimal allelic bias when comparing 1240k data to either shotgun or Twist data. This facilitates coanalysis of the large data sets that have been generated using 1240k and Twist capture, as well as shotgun sequencing approaches.


Assuntos
DNA Antigo , Polimorfismo de Nucleotídeo Único , Humanos , DNA Antigo/análise , Análise de Sequência de DNA , DNA/genética , Biblioteca Gênica
8.
ACS Infect Dis ; 8(8): 1491-1508, 2022 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-35801980

RESUMO

The rapid and persistent emergence of drug-resistant bacteria poses a looming public health crisis. The possible task of developing new sets of antibiotics to replenish the existing ones is daunting to say the least. Searching for adjuvants that restore or even enhance the potency of existing antibiotics against drug-resistant strains of bacteria represents a practical and cost-effective approach. Herein, we describe the discovery of potent adjuvants that extend the antimicrobial spectrum of existing antibiotics and restore their effectiveness toward drug-resistant strains including mcr-1-expressing strains. From a library of cationic compounds, MD-100, which has a diamidine core structure, was identified as a potent antibiotic adjuvant against Gram-negative bacteria. Further optimization efforts including the synthesis of ∼20 compounds through medicinal chemistry work led to the discovery of a much more potent compound MD-124. MD-124 was shown to sensitize various Gram-negative bacterial species and strains, including multidrug resistant pathogens, toward existing antibiotics with diverse mechanisms of action. We further demonstrated the efficacy of MD-124 in an ex vivo skin infection model and in an in vivo murine systemic infection model using both wild-type and drug-resistant Escherichia coli strains. MD-124 functions through selective permeabilization of the outer membrane of Gram-negative bacteria. Importantly, bacteria exhibited low-resistance frequency toward MD-124. In-depth computational investigations of MD-124 binding to the bacterial outer membrane using equilibrium and steered molecular dynamics simulations revealed key structural features for favorable interactions. The very potent nature of such adjuvants distinguishes them as very useful leads for future drug development in combating bacterial drug resistance.


Assuntos
Antibacterianos , Proteínas de Escherichia coli , Adjuvantes Farmacêuticos/farmacologia , Animais , Antibacterianos/química , Farmacorresistência Bacteriana , Farmacorresistência Bacteriana Múltipla , Escherichia coli , Bactérias Gram-Negativas , Camundongos
9.
BMC Psychiatry ; 22(1): 370, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35650555

RESUMO

BACKGROUND: The use of formal coercion such as seclusion, mechanical restraint, and forced medication is one of the most challenging and complex issues in mental health care, on the clinical, the legal, and the ethical level. Clinical ethics support aims at assisting healthcare practitioners in determining the morally most justifiable course of action in these situations. However, the effectiveness of clinical ethics support has hardly been studied so far. METHODS: Monthly moral case deliberation (MCD) was implemented in two acute wards of two different psychiatric hospitals in Switzerland. Frequency and intensity of coercion was measured on ward level (npatients = 405), and the Moral Attentiveness Scale, Knowledge on Coercion Scale, and Staff Attitudes towards Coercion Scale were applied on healthcare practitioner level (nHP = 46). Pre-post-comparisons were conducted using multi-level modeling where appropriate. RESULTS: After implementation of MCD, formal coercion was less frequent (particularly seclusion, small effect size; 9.6 vs. 16.7%, p = .034, Cramér's V = .105) and less intense (particularly mechanical restraint, large effect size; 86.8 ± 45.3 vs. 14.5 ± 12.1 h, exact p = .019, r = -.74), and approval for coercive measures among healthcare practitioners was lower when controlling for the number of MCD sessions attended. CONCLUSIONS: Clinical ethics support such as MCD may be a hitherto underutilized service for the reduction of coercion, complementing existing strategies and programs. Implementing clinical ethics support may help improve quality of care for persons suffering from severe mental illness.


Assuntos
Coerção , Psiquiatria , Ética Clínica , Hospitais Psiquiátricos , Humanos , Projetos Piloto
10.
Proc Natl Acad Sci U S A ; 119(15): e2106743119, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35389750

RESUMO

Human culture, biology, and health were shaped dramatically by the onset of agriculture ∼12,000 y B.P. This shift is hypothesized to have resulted in increased individual fitness and population growth as evidenced by archaeological and population genomic data alongside a decline in physiological health as inferred from skeletal remains. Here, we consider osteological and ancient DNA data from the same prehistoric individuals to study human stature variation as a proxy for health across a transition to agriculture. Specifically, we compared "predicted" genetic contributions to height from paleogenomic data and "achieved" adult osteological height estimated from long bone measurements for 167 individuals across Europe spanning the Upper Paleolithic to Iron Age (∼38,000 to 2,400 B.P.). We found that individuals from the Neolithic were shorter than expected (given their individual polygenic height scores) by an average of −3.82 cm relative to individuals from the Upper Paleolithic and Mesolithic (P = 0.040) and −2.21 cm shorter relative to post-Neolithic individuals (P = 0.068), with osteological vs. expected stature steadily increasing across the Copper (+1.95 cm relative to the Neolithic), Bronze (+2.70 cm), and Iron (+3.27 cm) Ages. These results were attenuated when we additionally accounted for genome-wide genetic ancestry variation: for example, with Neolithic individuals −2.82 cm shorter than expected on average relative to pre-Neolithic individuals (P = 0.120). We also incorporated observations of paleopathological indicators of nonspecific stress that can persist from childhood to adulthood in skeletal remains into our model. Overall, our work highlights the potential of integrating disparate datasets to explore proxies of health in prehistory.


Assuntos
Agricultura , Estatura , Fazendeiros , Saúde , Esqueleto , Adulto , Agricultura/história , Estatura/genética , Criança , DNA Antigo , Europa (Continente) , Fazendeiros/história , Variação Genética , Genômica , Saúde/história , História Antiga , Humanos , Paleopatologia , Esqueleto/anatomia & histologia
11.
Metallomics ; 14(1)2022 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-34963007

RESUMO

The nickel (Ni)-chelator dimethylglyoxime (DMG) was found to be bacteriostatic towards Campylobacter jejuni. Supplementation of nickel to DMG-containing media restored bacterial growth, whereas supplementation of cobalt or zinc had no effect on the growth inhibition. Unexpectedly, the combination of millimolar levels of DMG with micromolar levels of copper (Cu) was bactericidal, an effect not seen in select Gram-negative pathogenic bacteria. Both the cytoplasmic Ni-binding chaperone SlyD and the twin arginine translocation (Tat)-dependent periplasmic copper oxidase CueO were found to play a central role in the Cu-DMG hypersensitivity phenotype. Ni-replete SlyD is needed for Tat-dependent CueO translocation to the periplasm, whereas Ni-depleted (DMG-treated) SlyD is unable to interact with the CueO Tat signal peptide, leading to mislocalization of CueO and increased copper sensitivity. In support of this model, C. jejuni ΔslyD and ΔcueO mutants were more sensitive to copper than the wild-type (WT); CueO was less abundant in the periplasmic fraction of ΔslyD or DMG-grown WT cells, compared to WT cells grown on plain medium; SlyD binds the CueO signal sequence peptide, with DMG inhibiting and nickel enhancing the binding, respectively. Injection of Cu-DMG into Galleria mellonella before C. jejuni inoculation significantly increased the insect survival rate compared to the control group. In chickens, oral administration of DMG or Cu-DMG decreased and even abolished C. jejuni colonization in some cases, compared to both water-only and Cu-only control groups. The latter finding is important, since campylobacteriosis is the leading bacterial foodborne infection, and chicken meat constitutes the major foodborne source.


Assuntos
Campylobacter jejuni , Animais , Campylobacter jejuni/metabolismo , Quelantes/metabolismo , Galinhas/metabolismo , Níquel/metabolismo , Níquel/toxicidade , Oximas
13.
Nat Hum Behav ; 5(9): 1251-1258, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34426668

RESUMO

Human same-sex sexual behaviour (SSB) is heritable, confers no immediately obvious direct reproductive or survival benefit and can divert mating effort from reproductive opportunities. This presents a Darwinian paradox: why has SSB been maintained despite apparent selection against it? We show that genetic effects associated with SSB may, in individuals who only engage in opposite-sex sexual behaviour (OSB individuals), confer a mating advantage. Using results from a recent genome-wide association study of SSB and a new genome-wide association study on number of opposite-sex sexual partners in 358,426 individuals, we show that, among OSB individuals, genetic effects associated with SSB are associated with having more opposite-sex sexual partners. Computer simulations suggest that such a mating advantage for alleles associated with SSB could help explain how it has been evolutionarily maintained. Caveats include the cultural specificity of our UK and US samples, the societal regulation of sexual behaviour in these populations, the difficulty of measuring mating success and the fact that measured variants capture a minority of the total genetic variation in the traits.


Assuntos
Comportamento de Escolha/fisiologia , Comportamento Sexual/fisiologia , Parceiros Sexuais/psicologia , Minorias Sexuais e de Gênero/psicologia , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino , Fenótipo , Reino Unido , Estados Unidos
14.
Sci Rep ; 11(1): 10794, 2021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-34031459

RESUMO

Iron-sulfur (Fe-S) proteins play essential roles in all living organisms. The gastric pathogen Helicobacter pylori relies exclusively on the NIF system for biosynthesis and delivery of Fe-S clusters. Previously characterized components include two essential proteins, NifS (cysteine desulfurase) and NifU (scaffold protein), and a dispensable Fe-S carrier, Nfu. Among 38 proteins previously predicted to coordinate Fe-S clusters, two proteins, HP0207 (a member of the Nbp35/ApbC ATPase family) and HP0277 (previously annotated as FdxA, a member of the YfhL ferredoxin-like family) were further studied, using a bacterial two-hybrid system approach to identify protein-protein interactions. ApbC was found to interact with 30 proteins, including itself, NifS, NifU, Nfu and FdxA, and alteration of the conserved ATPase motif in ApbC resulted in a significant (50%) decrease in the number of protein interactions, suggesting the ATpase activity is needed for some ApbC-target protein interactions. FdxA was shown to interact with 21 proteins, including itself, NifS, ApbC and Nfu, however no interactions between NifU and FdxA were detected. By use of cross-linking studies, a 51-kDa ApbC-Nfu heterodimer complex was identified. Attempts to generate apbC chromosomal deletion mutants in H. pylori were unsuccessful, therefore indirectly suggesting the hp0207 gene is essential. In contrast, mutants in the fdxA gene were obtained, albeit only in one parental strain (26695). Taken together, these results suggest both ApbC and FdxA are important players in the H. pylori NIF maturation system.


Assuntos
Helicobacter pylori/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Proteínas de Bactérias/metabolismo , Fixação de Nitrogênio , Mapas de Interação de Proteínas , Técnicas do Sistema de Duplo-Híbrido
15.
Sci Rep ; 11(1): 6622, 2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33758258

RESUMO

One of the hallmarks of the most common neurodegenerative disease, Alzheimer's disease (AD), is the extracellular deposition and aggregation of Amyloid Beta (Aß)-peptides in the brain. Previous studies have shown that select metal ions, most specifically copper (Cu) and zinc (Zn) ions, have a synergistic effect on the aggregation of Aß-peptides. In the present study, inductively coupled plasma mass spectrometry (ICP-MS) was used to determine the metal content of a commercial recombinant human Aß40 peptide. Cu and Zn were among the metals detected; unexpectedly, nickel (Ni) was one of the most abundant elements. Using a fluorescence-based assay, we found that Aß40 peptide in vitro aggregation was enhanced by addition of Zn2+ and Ni2+, and Ni2+-induced aggregation was facilitated by acidic conditions. Nickel binding to Aß40 peptide was confirmed by isothermal titration calorimetry. Addition of the Ni-specific chelator dimethylglyoxime (DMG) inhibited Aß40 aggregation in absence of added metal, as well as in presence of Cu2+ and Ni2+, but not in presence of Zn2+. Finally, mass spectrometry analysis revealed that DMG can coordinate Cu or Ni, but not Fe, Se or Zn. Taken together, our results indicate that Ni2+ ions enhance, whereas nickel chelation inhibits, Aß peptide in vitro aggregation. Hence, DMG-mediated Ni-chelation constitutes a promising approach towards inhibiting or slowing down Aß40 aggregation.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Quelantes/metabolismo , Níquel/metabolismo , Oximas/farmacologia , Agregados Proteicos/efeitos dos fármacos , Agregação Patológica de Proteínas/metabolismo , Doença de Alzheimer/etiologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Cobre , Relação Dose-Resposta a Droga , Descoberta de Drogas , Humanos , Metais , Zinco
16.
Science ; 371(6536)2021 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-33766859

RESUMO

Hamer et al argue that the variable "ever versus never had a same-sex partner" does not capture the complexity of human sexuality. We agree and said so in our paper. But Hamer et al neglect to mention that we also reported follow-up analyses showing substantial overlap of the genetic influences on our main variable and on more nuanced measures of sexual behavior, attraction, and identity.


Assuntos
Estudo de Associação Genômica Ampla , Comportamento Sexual , Humanos , Resolução de Problemas
17.
Nanomaterials (Basel) ; 10(11)2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33233512

RESUMO

The development of innovative antimicrobial materials is crucial in thwarting infectious diseases caused by microbes, as drug-resistant pathogens are increasing in both number and capacity to detoxify the antimicrobial drugs used today. An ideal antimicrobial material should inhibit a wide variety of bacteria in a short period of time, be less or not toxic to normal cells, and the fabrication or synthesis process should be cheap and easy. We report a one-step microwave-assisted hydrothermal synthesis of mixed composite CuxFeyOz (Fe2O3/Cu2O/CuO/CuFe2O) nanoparticles (NPs) as an excellent antimicrobial material. The 1 mg/mL CuxFeyOz NPs with the composition 36% CuFeO2, 28% Cu2O and 36% Fe2O3 have a general antimicrobial activity greater than 5 log reduction within 4 h against nine important human pathogenic bacteria (including drug-resistant bacteria as well as Gram-positive and Gram-negative strains). For example, they induced a >9 log reduction in Escherichia coli B viability after 15 min of incubation, and an ~8 log reduction in multidrug-resistant Klebsiella pneumoniae after 4 h incubation. Cytotoxicity tests against mouse fibroblast cells showed about 74% viability when exposed to 1 mg/mL CuxFeyOz NPs for 24 h, compared to the 20% viability for 1 mg/mL pure Cu2O NPs synthesized by the same method. These results show that the CuxFeyOz composite NPs are a highly efficient, low-toxicity and cheap antimicrobial material that has promising potential for applications in medical and food safety.

18.
Sensors (Basel) ; 20(14)2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-32698501

RESUMO

Understanding transport phenomena and governing mechanisms of different physical and chemical processes in porous media has been a critical research area for decades. Correlating fluid flow behaviour at the micro-scale with macro-scale parameters, such as relative permeability and capillary pressure, is key to understanding the processes governing subsurface systems, and this in turn allows us to improve the accuracy of modelling and simulations of transport phenomena at a large scale. Over the last two decades, there have been significant developments in our understanding of pore-scale processes and modelling of complex underground systems. Microfluidic devices (micromodels) and imaging techniques, as facilitators to link experimental observations to simulation, have greatly contributed to these achievements. Although several reviews exist covering separately advances in one of these two areas, we present here a detailed review integrating recent advances and applications in both micromodels and imaging techniques. This includes a comprehensive analysis of critical aspects of fabrication techniques of micromodels, and the most recent advances such as embedding fibre optic sensors in micromodels for research applications. To complete the analysis of visualization techniques, we have thoroughly reviewed the most applicable imaging techniques in the area of geoscience and geo-energy. Moreover, the integration of microfluidic devices and imaging techniques was highlighted as appropriate. In this review, we focus particularly on four prominent yet very wide application areas, namely "fluid flow in porous media", "flow in heterogeneous rocks and fractures", "reactive transport, solute and colloid transport", and finally "porous media characterization". In summary, this review provides an in-depth analysis of micromodels and imaging techniques that can help to guide future research in the in-situ visualization of fluid flow in porous media.

19.
Front Microbiol ; 11: 1191, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32625174

RESUMO

Campylobacter fetus is commonly associated with venereal disease and abortions in cattle and sheep, and can also cause intestinal or systemic infections in humans that are immunocompromised, elderly, or exposed to infected livestock. It is also believed that C. fetus infection can result from the consumption or handling of contaminated food products, but C. fetus is rarely detected in food since isolation methods are not suited for its detection and the physiology of the organism makes culturing difficult. In the related species, Campylobacter jejuni, the ability to colonize the host has been linked to N-linked protein glycosylation with quantitative proteomics demonstrating that glycosylation is interconnected with cell physiology. Using label-free quantitative (LFQ) proteomics, we found more than 100 proteins significantly altered in expression in two C. fetus subsp. fetus protein glycosylation (pgl) mutants (pglX and pglJ) compared to the wild-type. Significant increases in the expression of the (NiFe)-hydrogenase HynABC, catalyzing H2-oxidation for energy harvesting, correlated with significantly increased levels of cellular nickel, improved growth in H2 and increased hydrogenase activity, suggesting that N-glycosylation in C. fetus is involved in regulating the HynABC hydrogenase and nickel homeostasis. To further elucidate the function of the C. fetus pgl pathway and its enzymes, heterologous expression in Escherichia coli followed by mutational and functional analyses revealed that PglX and PglY are novel glycosyltransferases involved in extending the C. fetus hexasaccharide beyond the conserved core, while PglJ and PglA have similar activities to their homologs in C. jejuni. In addition, the pgl mutants displayed decreased motility and ethidium bromide efflux and showed an increased sensitivity to antibiotics. This work not only provides insight into the unique protein N-glycosylation pathway of C. fetus, but also expands our knowledge on the influence of protein N-glycosylation on Campylobacter cell physiology.

20.
Microbiol Mol Biol Rev ; 84(1)2020 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-31996394

RESUMO

Pathogenic microorganisms use various mechanisms to conserve energy in host tissues and environmental reservoirs. One widespread but often overlooked means of energy conservation is through the consumption or production of molecular hydrogen (H2). Here, we comprehensively review the distribution, biochemistry, and physiology of H2 metabolism in pathogens. Over 200 pathogens and pathobionts carry genes for hydrogenases, the enzymes responsible for H2 oxidation and/or production. Furthermore, at least 46 of these species have been experimentally shown to consume or produce H2 Several major human pathogens use the large amounts of H2 produced by colonic microbiota as an energy source for aerobic or anaerobic respiration. This process has been shown to be critical for growth and virulence of the gastrointestinal bacteria Salmonella enterica serovar Typhimurium, Campylobacter jejuni, Campylobacter concisus, and Helicobacter pylori (including carcinogenic strains). H2 oxidation is generally a facultative trait controlled by central regulators in response to energy and oxidant availability. Other bacterial and protist pathogens produce H2 as a diffusible end product of fermentation processes. These include facultative anaerobes such as Escherichia coli, S Typhimurium, and Giardia intestinalis, which persist by fermentation when limited for respiratory electron acceptors, as well as obligate anaerobes, such as Clostridium perfringens, Clostridioides difficile, and Trichomonas vaginalis, that produce large amounts of H2 during growth. Overall, there is a rich literature on hydrogenases in growth, survival, and virulence in some pathogens. However, we lack a detailed understanding of H2 metabolism in most pathogens, especially obligately anaerobic bacteria, as well as a holistic understanding of gastrointestinal H2 transactions overall. Based on these findings, we also evaluate H2 metabolism as a possible target for drug development or other therapies.


Assuntos
Bactérias/metabolismo , Bactérias/patogenicidade , Hidrogênio/metabolismo , Hidrogenase/metabolismo , Animais , Bactérias/enzimologia , Fermentação , Trato Gastrointestinal/microbiologia , Genoma Bacteriano , Humanos , Oxirredução , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...